Commercial Production of High-Value Vegetables Using BPSU Automated Soilless Culture System

Authors

  • Walter G Valdez Bataan Peninsula State University
  • Rodrigo C Munoz Bataan Peninsula State University
  • Lorna R Roldan Bataan Peninsula State University
  • Merriam A Sanggoy Bataan Peninsula State University
  • Kimberly C Rivera Bataan Peninsula State University

DOI:

https://doi.org/10.55927/fjmr.v4i10.550

Keywords:

Automated Soilless Culture System, High-Value Vegetable Production, Hydroponics, Sustainable Agriculture, Economic Viability

Abstract

Bataan Peninsula State University (BPSU) in the Philippines has developed an automated soilless culture system to enhance the commercial production of high-value vegetables in Bataan. Implemented in Limay, Pilar, and the BPSU-Abucay Campus, the project aimed to improve farm productivity and provide safe, quality produce through controlled greenhouse conditions. The automated temperatures were maintained between 27–30°C, and humidity levels ranged from 65–85%, resulting in healthy crop growth and an average yield of 169.92 kilograms of lettuce per month. The system generated a net annual income of ₱129,204.49 with a 74% return on investment. Findings demonstrate that the BPSU Automated Soilless Culture System offers a practical and sustainable approach to modern vegetable production.

References

Ahmad, A., Liew, A. X. W., Venturini, F., Kalogeras, A., Candiani, A., Di Benedetto, G., Ajibola, S., Cartujo, P., Romero, P., Lykoudi, A., De Grandis, M. M., Xouris, C., Lo Bianco, R., Doddy, I., Elegbede, I., D’Urso Labate, G. F., García Del Moral, L. F., & Martos, V. (2024). AI can empower agriculture for global food security: Challenges and prospects in developing nations. Frontiers in Artificial Intelligence, 7, 1328530. https://doi.org/10.3389/frai.2024.1328530

Ali, Z., Muhammad, A., Lee, N., Waqar, M., & Lee, S. W. (2025). Artificial Intelligence for Sustainable Agriculture: A Comprehensive Review of AI-Driven Technologies in Crop Production. Sustainability, 17(5), 2281. https://doi.org/10.3390/su17052281

Armas, K. L., Lorenzo, Engr. G., & Cruz, C. D. (2023). Financial Viability of Business Models For Engineered Vertical Hydroponics Systems For Sustainable Onion Production in The Philippines. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 864–872. https://doi.org/10.37385/jaets.v4i2.2040

Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., & Hasrane, I. (2022). Design, technology, and management of greenhouse: A review. Journal of Cleaner Production, 373, 133753. https://doi.org/10.1016/j.jclepro.2022.133753

Baltazar, R. G. (2024). Forecasting the Impact of Climate Change on Rice Crop Yields under RCP4.5 and RCP8.5 Scenarios in Central Luzon, Philippines, Using Machine Learning Algorithms. International Journal of Agriculture and Natural Resources, 51(1). https://doi.org/10.7764/ijanr.v51i1.2494

Banboukian, A., Chen, Y., & Thomas, V. M. (2025). The challenges of controlled environment hydroponic farming: A life cycle assessment of lettuce. The International Journal of Life Cycle Assessment, 30(7), 1691–1704. https://doi.org/10.1007/s11367-025-02463-6

Bonelli, L., Montesano, F. F., D’Imperio, M., Gonnella, M., Boari, A., Leoni, B., & Serio, F. (2024). Sensor-Based Fertigation Management Enhances Resource Utilization and Crop Performance in Soilless Strawberry Cultivation. Agronomy, 14(3), 465. https://doi.org/10.3390/agronomy14030465

Chen, X. (2025). The role of modern agricultural technologies in improving agricultural productivity and land use efficiency. Frontiers in Plant Science, 16, 1675657. https://doi.org/10.3389/fpls.2025.1675657

Dennison, M. S., Kumar, P. S., Wamyil, F., Meji, M. A., & Ganapathy, T. (2025). The role of automation and robotics in transforming hydroponics and aquaponics to large scale. Discover Sustainability, 6(1), 105. https://doi.org/10.1007/s43621-025-00908-4

Edrian P, M. M. (2025). The viability of hydroponic agriculture in tropical developing regions: A case study of Nueva Ecija, Philippines. Asian Journal of Agriculture and Rural Development, 15(2), 202–213. https://doi.org/10.55493/5005.v15i2.5406

Galvan, J. P. D., Adorio, M. D., Simon, M. R. A., & Razote, R. P. (2021). Growth and yield performance of pechay (Brassica napus L.) in hydroponics system as influenced by magnetic field. International Journal of Agronomy and Agricultural Research, 19(1), 1–8.

Harniati, -, Trisnasari, W., & Saridewi, T. R. (2023). Smart Greenhouse Technology for Hydroponic Farming: Is it Viable and Profitable Business? International Journal on Advanced Science, Engineering and Information Technology, 13(4), 1333–1341. https://doi.org/10.18517/ijaseit.13.4.17916

Heo, J., Baek, J., Subah, Z., & Ryu, J. H. (2024). Evaluating crop growth between hydroponics and aquaponics with different light inputs. Frontiers in Horticulture, 3, 1413224. https://doi.org/10.3389/fhort.2024.1413224

Herrera-Arroyo, R., Martínez-Nolasco, J., Botello-Álvarez, E., Sámano-Ortega, V., Martínez-Nolasco, C., & Moreno-Aguilera, C. (2025). Smart Hydroponic Cultivation System for Lettuce (Lactuca sativa L.) Growth Under Different Nutrient Solution Concentrations in a Controlled Environment. Applied System Innovation, 8(4), 110. https://doi.org/10.3390/asi8040110

Hutchinson, G. K., Nguyen, L. X., Rubio Ames, Z., Nemali, K., & Ferrarezi, R. S. (2025). Sensor-controlled fertigation management for higher yield and quality in greenhouse hydroponic strawberries. Frontiers in Plant Science, 15, 1469434. https://doi.org/10.3389/fpls.2024.1469434

Islam, S. (2025). Agriculture, food security, and sustainability: A review. Exploration of Foods and Foodomics, 101082. https://doi.org/10.37349/eff.2025.101082

Laghari, F., Ahmed, F., Ansari, B., & Silveira Ferreira, P. J. (2025). Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China. Sustainability, 17(5), 1980. https://doi.org/10.3390/su17051980

Lakhiar, I. A., Yan, H., Syed, T. N., Zhang, C., Shaikh, S. A., Rakibuzzaman, Md., & Vistro, R. B. (2025). Soilless Agricultural Systems: Opportunities, Challenges, and Applications for Enhancing Horticultural Resilience to Climate Change and Urbanization. Horticulturae, 11(6), 568. https://doi.org/10.3390/horticulturae11060568

Lenton, T. M., Xu, C., Abrams, J. F., Ghadiali, A., Loriani, S., Sakschewski, B., Zimm, C., Ebi, K. L., Dunn, R. R., Svenning, J.-C., & Scheffer, M. (2023). Quantifying the human cost of global warming. Nature Sustainability, 6(10), 1237–1247. https://doi.org/10.1038/s41893-023-01132-6

Li, S., Roger, L. M., Kumar, L., Lewinski, N. A., Klein-Seetharaman, J., Putnam, H. M., & Yang, J. (2023). High-frequency imagery to capture coral tissue (Montipora capricornis) response to environmental stress, a pilot study. PLOS ONE, 18(3), e0283042. https://doi.org/10.1371/journal.pone.0283042

Lim, D., Keerthi, K., Perumbilavil, S., Suchand Sandeep, C. S., Antony, M. M., & Matham, M. V. (2024). A real-time on-site precision nutrient monitoring system for hydroponic cultivation utilizing LIBS. Chemical and Biological Technologies in Agriculture, 11(1), 111. https://doi.org/10.1186/s40538-024-00641-6

Mondal, S. K., Su, B., Huang, J., Zhai, J., Wang, G., Kundzewicz, Z. W., Wang, Y., Jiang, S., Jiang, H., Zhou, J., & Jiang, T. (2024). Climate Change Will Aggravate South Asian Cropland Exposure to Drought by the Middle of 21st Century. Earth’s Future, 12(5), e2023EF003872. https://doi.org/10.1029/2023EF003872

Mylan, J., Andrews, J., & Maye, D. (2023). The big business of sustainable food production and consumption: Exploring the transition to alternative proteins. Proceedings of the National Academy of Sciences, 120(47), e2207782120. https://doi.org/10.1073/pnas.2207782120

Narayanan, R., Madas, S. R., & Singh, R. (2025). Towards Sustainable Greenhouse Design: A Numerical Study on Temperature Control in Multi-Span Hoop Structures. Sustainability, 17(19), 8712. https://doi.org/10.3390/su17198712

Ojo, M. O., & Zahid, A. (2022). Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects. Sensors, 22(20), 7965. https://doi.org/10.3390/s22207965

Park, J. A. G. C. and T. (2023). Transforming Philippine Agriculture through Agriculture 4.0. Precision Agriculture Science and Technology, 5(4), 201–214. https://doi.org/10.22765/PASTJ.20230016

Quirante, Z. A., & Politud, E. R. R. (2025). Mainstreaming Low-Cost Hydroponics Using Fermented Plant Juice for Sustainable Lettuce Production in Urban Farming. International Journal of Multidisciplinary: Applied Business and Education Research, 6(9), 4675–4698. https://doi.org/10.11594/ijmaber.06.09.35

Rahman, M. A., Chakraborty, N. R., Sufiun, A., Banshal, S. K., & Tajnin, F. R. (2024). An AIoT-based hydroponic system for crop recommendation and nutrient parameter monitorization. Smart Agricultural Technology, 8, 100472. https://doi.org/10.1016/j.atech.2024.100472

Rajaseger, G. (2023). Hydroponics: Current trends in sustainable crop production. Bioinformation, 19(9), 925–938. https://doi.org/10.6026/97320630019925

Rajendran, S., Domalachenpa, T., Arora, H., Li, P., Sharma, A., & Rajauria, G. (2024). Hydroponics: Exploring innovative sustainable technologies and applications across crop production, with Emphasis on potato mini-tuber cultivation. Heliyon, 10(5), e26823. https://doi.org/10.1016/j.heliyon.2024.e26823

Sadek, N., Kamal, N., & Shehata, D. (2024). Internet of Things based smart automated indoor hydroponics and aeroponics greenhouse in Egypt. Ain Shams Engineering Journal, 15(2), 102341. https://doi.org/10.1016/j.asej.2023.102341

Song, S., Jeon, J., & Yoon, S. (2025). Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes. Energies, 18(7), 1613. https://doi.org/10.3390/en18071613

Van Bijsterveldt, C. E. J., Herman, P. M. J., Van Wesenbeeck, B. K., Ramadhani, S., Heuts, T. S., Van Starrenburg, C., Tas, S. A. J., Triyanti, A., Helmi, M., Tonneijck, F. H., & Bouma, T. J. (2023). Subsidence reveals potential impacts of future sea level rise on inhabited mangrove coasts. Nature Sustainability, 6(12), 1565–1577. https://doi.org/10.1038/s41893-023-01226-1

Wang, Y., Meili, N., & Fatichi, S. (2023). Evidence and Controls of the Acceleration of the Hydrological Cycle Over Land. Water Resources Research, 59(8), e2022WR033970. https://doi.org/10.1029/2022WR033970

Published

2025-10-30